
V1.6.0e DRAFT 20.7.2023

1

baumann.at – concepts & solutions – DI Dr. Christian Baumann

Document-Notarisation “DocNoS” – API

Version 1.6.0

Arbeitskreis Blockchain

Inhalt

1. Introduction ... 2

2. Variants of the blockchain interface ... 2

3. DocNoS-API .. 4

3.1. General .. 4

3.2. Create a notarisation ... 4

3.2.1. Request .. 5

3.2.2. Response ... 5

3.3. Verify a notarisation .. 6

3.3.1. Request .. 6

3.3.2. Response ... 7

4. Appendix: Test-Scripts ... 11

5. Appendix: Testsystem ... 14

5.1. Create a notarisation ... 14

5.2. Verifying a notarisation ... 17

5.3. Direct query of the data .. 19

V1.6.0e DRAFT 20.7.2023

2

1. Introduction

By means of "document notarisation", it can be proven that an electronic document existed in a certain

form at a certain time and has not been changed since then. Documents are identified by their "digital

fingerprints" (hash values), i.e. no data (readable in plain text) is transmitted, processed or stored.

The security and trust that the stored data cannot be manipulated is guaranteed by the blockchain

technology.

This document describes the REST API of the system "DocNoS" (Document Notarisation System), which

is used, among other things, in the course of the notarisation service of the WKO1 (Austrian Economic

Chamber) - called "Data Certification" - and the Vienna University of Economics and Business

Administration2. These two (and other) systems are combined in the "Austrian Public Service

Blockchain", which is set up as a consortium blockchain.

Parallel to the system for the public sector, there is also a system for use by the private sector, a B2B

counterpart called "Private Sector Blockchain". The nodes of this blockchain are operated by the

members of the "Blockchain Initiative Austria3".

The API described here is available across systems, i.e. can be used for both systems; any differences

are described in the respective sections.

2. Variants of the blockchain interface

In order to write the data to the respective blockchain (or also to search/read it), there are basically

two possibilities:

1) Direct access from the application to the blockchain node (via Multichain-RPC-API).

2) Access via the DocNoS API described in this document, which encapsulates the complexity of

blockchain access.

1 https://www.wko.at/service/innovation-technologie-digitalisierung/blockchain.html
2 https://www.wu.ac.at/blockchain/
3 https://www.bc-init.at/

https://www.wko.at/service/innovation-technologie-digitalisierung/blockchain.html
https://www.wu.ac.at/blockchain/
https://www.bc-init.at/

V1.6.0e DRAFT 20.7.2023

3

FIgure 1: Access variants using the naming of the "Austrian Public Service Blockchain"

Figure 2: Access variants using the naming of the "Private Sector Blockchain"

V1.6.0e DRAFT 20.7.2023

4

Managed access via the DocNoS API is usually preferable, as the API creates the DocNoS data structure

plus all keys as specified and can also manage access from different applications to several blockchain

nodes or streams and protect them with access authorisations. Upcoming extensions can also be

implemented more easily in the DocNoS API.

Direct access offers slightly better performance for high transaction numbers, but is much more

complex to implement as it needs to create the complete data structure plus all keys.

An example of an "Application B" as demoscripts and an example of a web GUI are described in the

appendix to this document.

3. DocNoS-API

3.1. General

The REST API provides functions for creating and verifying notarisations. It is addressed with https POST

(or alternatively with GET when verifying).

For the designation of hash procedures, the corresponding tokens are used according to the following

table (lower case):

Hash-Verfahren Token

SHA2– prefix „sha“

Example SHA2 256 Bit „sha256“ (must at least be present)

Example SHA2 512 Bit „sha512“

SHA3 – prefix „sha3/“

Example SHA3 512 Bit „sha3/512“ 4

If an (optional) "document ID" is also transferred, it must be formatted as UUID (version 4).

To authenticate the client to the API, the client passes an API token (shared secret) in the http header5,

example:

Content-type: application/json

Accept: application/json

Content-Length: 457

X-ApiToken: pyDemo/test/44edd16fa685b3be6b874a01...

3.2. Create a notarisation

To create a notarisation, the client passes at least a hash value of the type SHA 256. Optionally, other

types can be passed, also optionally a document ID.

4 Note: When coding in JSON it will become „sha3\/512“
5 Please request the API token for the test system from C. Baumann.

V1.6.0e DRAFT 20.7.2023

5

The server creates the defined data structure and enters it plus keys into the configured blockchain

stream. The response of the API server contains detailed data about the resulting blockchain

transaction.

The appendix to this document shows sample code for generating and submitting API requests.

3.2.1. Request

The URL in the test system is: https://blockchains.web-lab.at/docnos3-api/create/

The user data to be transmitted are to be transferred in the http body as JSON and are structured as

follows. The following applies

 There must be at least one entry (sha256) in "hashes".

 The entry "id" is optional. If it is used, the value must be a UUID (according to RFC4122).

 The entry "remarks" is also optional.

{

 "id": "12345678-5f7c-4eb2-9344-b35943815ed5",

 "hashes": {

 "sha256":

"8daf3a72c2bea121e7f8477141bfad7787192a2e0f82680cbf83f55a070fbdbf",

 "sha512":

"439eef199e5da58722f459a8e4088c842015fe0458ce27bf8bc5a3d2cdb2fb65b3a61ec3d750b

bd8912edc82ffb325cafe052d20ffad5dea185dab6244f6d351"

 },

 "remarks": "sent from pyDemo 0.5"

}

3.2.2. Response

If successful, the service returns http status 200 (OK) and the following JSON response:

{

 "success": "OK, data published in transaction

11fecdbffb6f9d626c921a34d5b537ea4528e33cd074e2bf561a467c0fb52860",

 "timeStamp": "2023-07-20T09:01:05+02:00",

 "id": "12345678-5f7c-4eb2-9344-b35943815ed5",

 "txid":

"11fecdbffb6f9d626c921a34d5b537ea4528e33cd074e2bf561a467c0fb52860",

 "service": "DocNoS receiver\/create v1.6.2",

 "infos": "client:pyDemo v:1 stream:docnos-test-1 chain:mc2b1

rpc:127.0.0.1:7222"

}

In case of an error, the following response is sent:

{

 "error": "Error 401: Unauthorized (API-Token not known\/valid)",

https://blockchains.web-lab.at/docnos3-api/create/

V1.6.0e DRAFT 20.7.2023

6

 "service": "DocNoS receiver\/create v1.6.2",

 "infos": "n\/a"

}

In addition, the http status is set according to the following table:

Statuscode Meaning

401 No (valid) API token set

403 Forbidden:

 Client either (temporarily) deactivated

 or IP of the client is from a not allowed IP range (subnet)

405 Method not allowed: Request is not a post-request

400 Bad request:

 No user data available or user data not (correctly) JSON encoded.

 No element "hashes" in the user data

 The hash types or hash values do not conform to the specification (or
configuration).

 - If "id" is used but does not correspond to UUID format (RFC4122)

500 Error in the configuration of the service

503 Service unavailable: chain or stream (temporarily) deactivated

3.3. Verify a notarisation

In the course of verifying a notarisation, the desired data is searched for in the blockchain stream. To

do this, the API client must pass one of four possible parameters:

 Hash value of the document in question; there may be several entries with the same hash

value if the same document has been notarised several times.

 Document ID (if it was used); several entries with the same ID can exist, as the ID can be

created by the API client.

 ID of the transaction; this is always unique.

 Search for block hash; several transactions can exist in one block.

 (Upcoming extension: Search for block hash with filtering by hash values and/or document

IDs).

The search result can be the following

 No entry found: If a hash value was searched for, this means that the document concerned (in

the version at hand) was not notarised in this blockchain system.

 One entry found

 Multiple entries found, see above for details. The oldest entry is the most relevant.

3.3.1. Request

The URL in the test system is: https://blockchains.web-lab.at/docnos3-api/verify/

A GET or POST request can be sent to the service for verification. One of the following parameters

must be used:

https://blockchains.web-lab.at/docnos3-api/verify/

V1.6.0e DRAFT 20.7.2023

7

 „hash“ in the form „type:value“, e.g. sha256:
8daf3a72c2bea121e7f8477141bfad7787192a2e0f82680cbf83f55a070fbdbf

 „txid“, e.g. 11fecdbffb6f9d626c921a34d5b537ea4528e33cd074e2bf561a467c0fb52860

 „id“, e.g. id:12345678-5f7c-4eb2-9344-b35943815ed5

 „blockHash“, e.g. 12345678-5f7c-4eb2-9344-b35943815ed5

3.3.2. Response

If successful, the following response is reported (for the Private Sector Blockchain):

{

 "success": "hash found:

sha256:8daf3a72c2bea121e7f8477141bfad7787192a2e0f82680cbf83f55a070fbdbf",

 "data": [

 {

 "publisher": "13VXwdarLRtV5fyP8qdWEFXebe6Ay45pgdY4Bb",

 "txid":

"11fecdbffb6f9d626c921a34d5b537ea4528e33cd074e2bf561a467c0fb52860",

 "blockHash":

"0001241892b2ac07a48e8c0587f0ba9c85dd130ed956a1b5596e0a65d1361169",

 "blockTime": "2023-07-20T09:01:09+02:00",

 "confirmations": 21,

 "data": {

 "timeStamp": "2023-07-20T09:01:05+02:00",

 "client": "pyDemo",

 "version": "DocNoS-v1.1",

 "data": {

 "id": "12345678-5f7c-4eb2-9344-b35943815ed5",

 "hashes": {

 "sha256":

"8daf3a72c2bea121e7f8477141bfad7787192a2e0f82680cbf83f55a070fbdbf",

 "sha512":

"439eef199e5da58722f459a8e4088c842015fe0458ce27bf8bc5a3d2cdb2fb65b3a61ec3d750b

bd8912edc82ffb325cafe052d20ffad5dea185dab6244f6d351"

 },

 "remarks": "sent from pyDemo 0.5"

 }

 }

 }

],

 "service": "DocNoS receiver/verify v1.6.2",

 "infos": "client:pyDemo v:1 stream:docnos-test-1 chain:mc2b1

rpc:127.0.0.1:7222"

}

In the "Austrian Public Service Blockchain" variant, the response is structured as follows:

{

V1.6.0e DRAFT 20.7.2023

8

 "success": "hash found",

 "service": "DocNoS receiver\/verify v1.40",

 "data": [

 {

 "txid":

"295a9c67904b0be0edb8a8474c3e0fb0dfaef5ed7d13f6f9a593284765092914",

 "blockHash":

"00df1aaee406648f3e3ba94ae488bd376320a8e1a2c11e80438e8f49ec05e674",

 "blockTime": "2020-12-08T17:34:15+01:00",

 "confirmations": 3,

 "data": {

 "metadataInternal": {

 "app": "unknown",

 "time": "1607445243000",

 "storageType": "JSON"

 },

 "metadataExternal": {

 "additionalMetadata": null,

 "user": "pyDemo",

 "dataType": "Blockstempel-v2",

 "tags": [

 "Blockstempel-v2",

 "id:1c123b9d-5f7c-4eb2-9344-b35943815ed5",

 "hash:sha256:2bf928c9b7877fa508487a70d387bee8b66399f3f

024bf757bbd52b4ea2c3aa2",

 "hash:sha512:61154490bbcbd6080bfc1d7797d465f251c79d6dc

e2a301a3df55cce7c7ad6275d69ba6fbe7a35be64c9ff581ef04554dd42f17f7fd38375e381763

72b52f79c",

 "hash:sha3\/512:9000b07534d4fe6f73dd8bff28d5b0b7946b80

845747b8fe7b81ce2b80a284d1edba24e22441aa2f0ea235ad537570dece2b01183430cd1148a9

7d7acca62426"

]

 },

 "data": {

 "id": "1c123b9d-5f7c-4eb2-9344-b35943815ed5",

 "time": "2020-12-08T17:34:03+01:00",

 "hashes": {

 "sha256":

"2bf928c9b7877fa508487a70d387bee8b66399f3f024bf757bbd52b4ea2c3aa2",

 "sha512":

"61154490bbcbd6080bfc1d7797d465f251c79d6dce2a301a3df55cce7c7ad6275d69ba6fbe7a3

5be64c9ff581ef04554dd42f17f7fd38375e38176372b52f79c",

 "sha3\/512":

"9000b07534d4fe6f73dd8bff28d5b0b7946b80845747b8fe7b81ce2b80a284d1edba24e22441a

a2f0ea235ad537570dece2b01183430cd1148a97d7acca62426"

 },

 "optional": {

 "size": null

 }

V1.6.0e DRAFT 20.7.2023

9

 }

 }

 }

]

}

If several results are found (e.g. when searching for a hash value that has been entered several times),

the response is as follows - an array with the corresponding transactions is entered in the "data"

element.

{

 "success": "hash found:

sha256:8daf3a72c2bea121e7f8477141bfad7787192a2e0f82680cbf83f55a070fbdbf",

 "data": [

 {

 "publisher": "13VXwdarLRtV5fyP8qdWEFXebe6Ay45pgdY4Bb",

 "txid":

"11fecdbffb6f9d626c921a34d5b537ea4528e33cd074e2bf561a467c0fb52860",

 "blockHash":

"0001241892b2ac07a48e8c0587f0ba9c85dd130ed956a1b5596e0a65d1361169",

 "blockTime": "2023-07-20T09:01:09+02:00",

 "confirmations": 21,

 "data": {

 ...

 }

 },

 {

 "publisher": "13VXwdarLRtV5fyP8qdWEFXebe6Ay45pgdY4Bb",

 "txid":

"dfb1d39c80ee0922c676cc95f76f4a6a5a822174e109da727bec012ea38e6df1",

 "blockHash": null,

 "blockTime": null,

 "confirmations": 0,

 "data": {

 ...

 }

 }

],

 "service": "DocNoS receiver/verify v1.6.2",

 "infos": "client:pyDemo v:1 stream:docnos-test-1 chain:mc2b1

rpc:127.0.0.1:7222"

}

If the verify occurs so shortly after a create that the transaction is valid but has not yet been processed

in a block, the blockTime can be zero, i.e. invalid (e.g. "blockTime": "1970-01-01T01:00:00+01:00"). In

this case, the processing programme should not issue an error message but information (e.g.

"Transaction not yet entered in any block").

V1.6.0e DRAFT 20.7.2023

10

In case of errors, the following response is transmitted:

{

 "error": "hash not found:

sha256:7d8028dc7273a4da78320629dd14fccc998bc9ff5a25f4152187c1404c3d9847",

 "service": "DocNoS receiver/verify v1.6.2",

 "infos": "client:pyDemo v:1 stream:docnos-test-1 chain:mc2b1

rpc:127.0.0.1:7222"

}

The http status codes are set according to the following table:

Statuscode Meaning

400 Bad request:

 None of the parameters "hash", "txid", "id" or "blockhash" were used.

 The format of txid or blockhash is not correct (if used)

404 Not found: No record (transaction) with the specified value was found (in the
blockchain)

401 No (valid) API token set

403 Forbidden:

 Client either (temporarily) deactivated

 or IP of the client is from a not permitted IP range (subnet)

500 Error in the configuration of the service

503 Service unavailable: chain or stream (temporarily) deactivated

V1.6.0e DRAFT 20.7.2023

11

4. Appendix: Test-Scripts

To provide a quick introduction to the use of the API for those interested, Python scripts have been

created and published on Github, see

https://github.com/austriapro/blockchain/tree/master/docnos3-testclient

The script "create_notarization.py" shows how a request is built, the API token is set in the http

header and the request is sent to the API server, here is an excerpt of the source code:

'''

Simple script to test DocNoS API function "create"

configuration see config.py

@author Chris Baumann <cba@infinite-trust-digital.com>,

<c.baumann@baumann.at>

@version v0.5 2023/07/20

'''

import sys

import datetime

import hashlib

import json

import requests # install with "pip3 install requests" if necessary

from config import *

print('--')

print('DocNos - Test ... create')

'''

A valid DocNos Create Request looks like this:

- id is an optional (v4) UUID e.g. for a document-id. If not present, it will

be generated from the API

- hashes: sha256 is required, sha512 (and sha3/512) optional

- remarks: optional, used for testing

{

 "id": "12345678-5f7c-4eb2-9344-b35943815ed5",

 "hashes": {

 "sha256":

"8daf3a72c2bea121e7f8477141bfad7787192a2e0f82680cbf83f55a070fbdbf",

 "sha512":

"439eef199e5da58722f459a8e4088c842015fe0458ce27bf8bc5a3d2cdb2fb65b3a61ec3d750b

bd8912edc82ffb325cafe052d20ffad5dea185dab6244f6d351"

 },

 "remarks": "sent from pyDemo 0.5"

}

'''

https://github.com/austriapro/blockchain/tree/master/docnos3-testclient

V1.6.0e DRAFT 20.7.2023

12

hash input data (in this case just the content, defined in config.py)

sha256 = hashlib.sha256(defaultContent.encode('utf-8')).hexdigest()

sha512 = hashlib.sha512(defaultContent.encode('utf-8')).hexdigest()

or create uuid based on some kind of document id etc.

uuid = '12345678-5f7c-4eb2-9344-b35943815ed5'

hashes = {

 'sha256': sha256,

 'sha512': sha512

}

example request using the optional uuid

request = {

 'id': uuid,

 'hashes': hashes,

 'remarks': 'sent from pyDemo 0.5'

}

minimal request would be

'''

request = {

 'hashes': hashes

}

'''

postData = json.dumps(request)

print('JSON-Request:')

print(postData)

print('------------------------------------')

length = str(len(postData))

httpHeaders = {

 'Content-type': 'application/json',

 'Accept': 'application/json',

 'Content-Length': length,

 'X-ApiToken': apiToken}

print(httpHeaders)

response = requests.post(url_create, data=postData, headers=httpHeaders)

print(str(response))

print('RESULT: ' + response.text)

The script "verify_notarization.py" shows the three variants of the search, here is an excerpt of

the source code:

'''

V1.6.0e DRAFT 20.7.2023

13

Simple script to test DocNoS API function "verify"

configuration see config.py

@author Chris Baumann <cba@infinite-trust-digital.com>,

<c.baumann@baumann.at>

@version v0.5 2023/07/20

'''

import sys

import hashlib

import json

import requests # install with "pip3 install requests" if necessary

from config import *

print('--')

print('DocNos for - Test ... verify')

SHA2 256

sha256_hash_to_verify = hashlib.sha256(

 defaultContent.encode('utf-8')).hexdigest()

print(sha256_hash_to_verify)

httpHeaders = {

 'Accept': 'application/json',

 'X-ApiToken': apiToken

}

search for specific hash

prefix required

key = 'hash'

value = 'sha256:' + sha256_hash_to_verify

OR search for an id (UUID)

prefix required

#key = 'id'

#value = 'id:12345678-5f7c-4eb2-9344-b35943815ed5'

OR search by transaction

#key = 'txid'

#value = '8877873041300b8ce01b0429523764e26b34422e9cfa7df532fd464a7ce89b03'

OR search by blockhash (new in v1.6.x)

'''

key = 'blockHash'

value = '00a72a6c434c46a334c0101698c6124c13b01675f2ade6b1281d00dc1827457b'

'''

V1.6.0e DRAFT 20.7.2023

14

response = requests.get(url_verify, params={key: value}, headers=httpHeaders)

print(str(response.headers))

print(str(response))

print('Raw RESULT: ' + response.text)

parsed_res = json.loads(response.text)

beautified_res = json.dumps(parsed_res, indent=2)

print('Beautified RESULT: ')

print(beautified_res)

In the script "config.py", the configuration of the API client is defined, essentially the URls for the

API calls and the API token:

configuration for current Test-System for contignum gmbh

url_create = 'https://blockchains.web-lab.at/docnos3-api/create/'

url_verify = 'https://blockchains.web-lab.at/docnos3-api/verify/'

apiToken = 'pyDemo/test/42edd16fa685b3be6b874a01a … etc.'

defaultContent = 'This is just some content, which is used as input example

... 123abc '

5. Appendix: Testsystem

The web GUI of the current test system can be called up at https://blockchains.web-lab.at/docnos/ 6.

This can of course also be used to verify blockchain entries created with demo scripts or, conversely,

to search for entries from the web GUI with the demo script. The use of the web GUI is described

briefly below.

5.1. Create a notarisation

To create a notarisation, a document must first be selected on the local system. The document is NOT

loaded onto the web server, but the calculation of the digital fingerprint of the document (hash value)

takes place in the user's web browser. Further additional information can be entered in the web form

(annotations). The entry of additional information is voluntary and optional. If no additional

information is entered, the entry is completely anonymous.

6 System with a GUI which can be switched to English see https://test.proof.li – (Production system see
https://proof.li)

https://test.proof.li/
https://proof.li/

V1.6.0e DRAFT 20.7.2023

15

After sending the data (hash value, optional annotations), the server performs an entry in the

notarisation blockchain and reports the result (timestamp, transaction ID ...) back to the user.

V1.6.0e DRAFT 20.7.2023

16

The user can now download a confirmation of the entry as a PDF document with QR code. This

document contains the reference to the entry (transaction ID), other essential data (timestamp) and

the optional additional information.

V1.6.0e DRAFT 20.7.2023

17

5.2. Verifying a notarisation

In order to check a notarisation at a later point in time, there are two possibilities - in both cases, the

hash value of the document is compared with the data stored in the blockchain.

1. In the first variant, the transaction ID shown on the confirmation is searched for in the system

(e.g. with the help of the QR code) and the data on the document is displayed. The hash value

of the document is calculated with any (other) tool and can now be compared.

V1.6.0e DRAFT 20.7.2023

18

2. With the second option, the hash value of the document is first calculated in the web browser,

the notarisation is searched for in the blockchain using this as the key and the confirmation

data created at that time is displayed. With this second option, the notarisation of a document

can be proven even if the user no longer has the confirmation.

V1.6.0e DRAFT 20.7.2023

19

If several entries exist for a hash value (as in this example), the oldest entry is displayed first.

A verification of a notarisation can of course take place on every participating system, not only on the

one that originally created the entry.

As an example, entries created with the web GUI can be verified with the Python demo code, or

notarisations created with it can be verified using the web GUI.

5.3. Direct query of the data

In the test system (Private Sector Blockchain), the data stored in the blockchain can also be accessed

directly (i.e. without searching via "verification"). The url for this is https://blockchains.web-

lab.at/docnos-view

https://blockchains.web-lab.at/docnos-view
https://blockchains.web-lab.at/docnos-view

V1.6.0e DRAFT 20.7.2023

20

The page displays all the data of the transactions available in the blockchain, similar to a block explorer.

baumann.at - concepts & solutions

DI Dr. Christian Baumann

e-Mail: c.baumann@baumann.at

Tel.: +43 664 43 24 243

Web: http://www4.baumann.at

mailto:c.baumann@baumann.at
http://www4.baumann.at/

